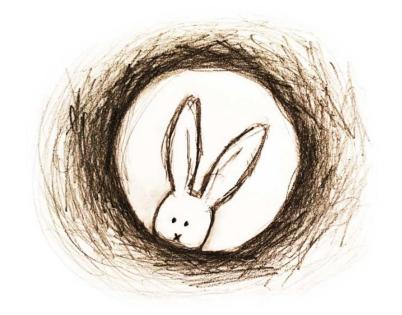


Following Emily Yedinak down a rabbit hole

Douglas Wicks

Question: Can we stimulate and not wait for Mother Nature?



The reality of looking down a hole into White Space

Numbers get very large and loose

"Approximate" and "About" - are precise terms

Google doesn't know where you're going

Iron(II) Silicate – A major source of Mother Nature's H₂

$$3\text{Fe}_2\text{SiO}_4 + 2\text{H}_2\text{O} \leftrightarrow 3\text{SiO}_2 + 2\text{Fe}_3\text{O}_4 + 2\text{H}_{2(aq)};$$

fayalite + water ↔ quartz + magnetite + hydrogen.

Roughly 6.6 kg H₂/ton of iron silicate equiv

And where do we find iron(II) silicates?

Olivine – Rarely Pure, and Never Simple

Fe reported as oxide but really silicates

~ 10% iron silicates (fayalites)

ApproximateAverage Composition

Components	Olivine
SiO ₂ Al ₂ O ₃	46.43 2.55
Fe_2O_3	10.88
TiO ₂	0.11
CaO	2.16
MgO	35.57
K_2O	0.39
Na_2O	0.17
MnO	0.17
Cr_2O_3	0.45
P_2O_5	0.00
ZrO_2	0.02
SO_3	0.00
BaO	0.00
ZnO	0.08
NiO	0.89
Co_3O_4	0.08
CuO	0.06
Total	100.00

Is there enough of this to make it matter?

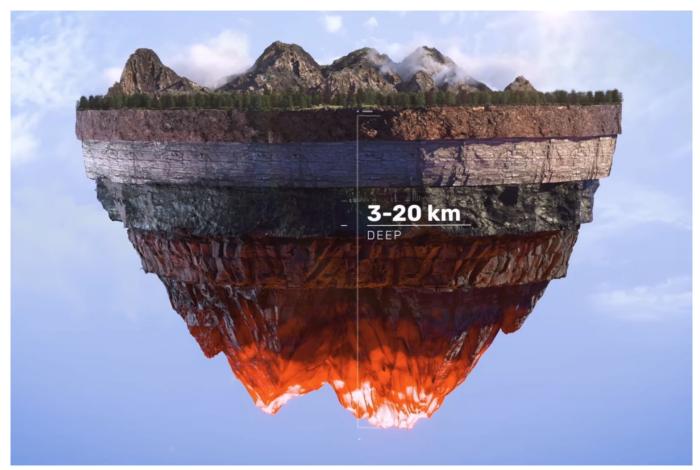
Let's pull out an envelope

- Weight of continental crust
 - -10^{19} ton
- ▶ 40% of which is olivinic
 - $-4 \times 10^{18} \text{ ton}$
- ► 10% of that is iron silicate
 - -4.0×10^{17} ton
- ► 0.0066 ton H₂/ton iron silicate
 - 2.6 x 10¹⁵ tons of potential H₂

Enough for millions of years of maximum H₂ demand

What are we waiting for? Let's go get it!

It has to be done in situ


Its thought to be a slow reaction

There are lots of things underground that like H₂

Where Geologic Hydrogen Produced?

Quaise Energy

Reactions occur deep

- Engineering georeactors kilometers underground?
- Purifying and claiming H₂ as it's formed?

Geologic Oxidation Happens under Extreme Conditions

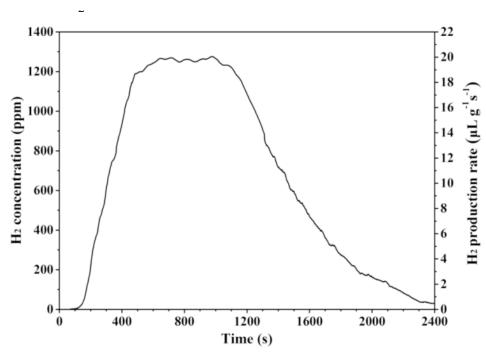
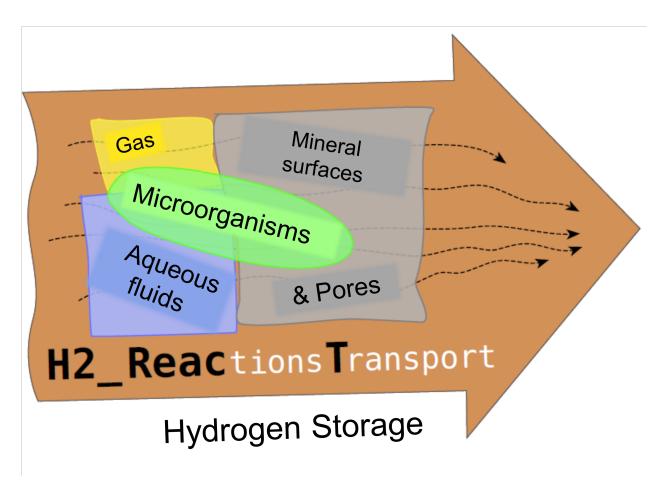


Figure 11. The hydrogen concentration as the time during the oxidation process to 1000 °C


- High temp and pressure

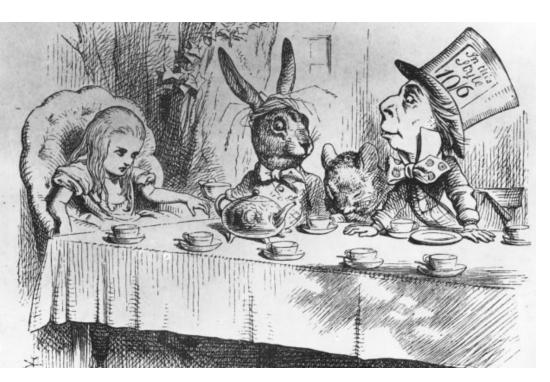
- Can one catalyze it?

How fast is fast enough?

What Happens to H₂ Underground?

Microbes use H₂

H₂ reduces oxides/sulfides


H₂ reacts to form methane

So - What can you bring to the tea party?

Finding and reaching deep earth deposits

Catalyzing this mineral reaction

Eliminating parasitic H₂ reactions

Thank You

Let's Reach for the end of the Hydrogen Rainbow

Doug.Wicks@hq.doe.gov